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PREFACE

This report describes work done in the summer of 1983 by Dr B. D.

Sivazlian, Department of Industrial and Systems Engineering, the University of

Florida, Gainesville, Florida 32611 under Contract No. F08635-83-C-0202 with

the Air Force Armament Laboratory (AFATL), Armament Division, Eglin Air Force

Base, Florida 32542. The program manager was Mr. Daniel A. Mclnnis (DLYW).

The work was initiated under a 1982 USAF-SCEEE Summer Faculty Research

Program sponsored by the Air Force Office of Scientific Research conducted by

the Southeastern Center for Electrical Engineering Education under Contract

No. F49620-82-C-0035.

This work addresses itself to the problem of computing the uncertainty

" associated with the probability of kill when using the two-parameter Carleton

damage function as specified in the Joint Munitions Effectiveness Manual/Air-

to-Surface (JMEM/AS) open end methods as described in 61 JTCG/ME-3-7 (Revised

15 May 1980).

The two-parameter Carleton damage function approximates the probability

of kill due to fragmentation of an exploding weapon in the absence of blast

effect and delivery error. Further, it assumes that at the center of the

exploding weapon, the probability of kill is unity. It thus excludes

weapon/target situations in which such probability of kill results in a number

* less than unity.

The author has benefited from helpful discussions with several people.

Particular thanks are due to Mr Jerry Bass, Mr Daniel Mclnnis, Mr Charles

Reynolds, and Ms Katherine H. Douglas, all from DLYW who have read the report

and have contributed to it through helpful comments.

The report is the first of a series dealing with the uncertainty

associated with various weapon effectiveness indices, and details

, "



methodologies and techniques used in computing such uncertainties in the

presence of error in the input parameters.

The Public Affairs Office has reviewed this report, and it is releasable

to the National Technical Information Service (NTIS), where it will be

available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MILTON D. Co o el, USAF
Chief, Analysis and St egic Defense Division
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SECTION 1

INTRODUCTION

The present report discusses methodologies for estimating the probability

of kill, Pk- taken as a measure of weapons effectiveness. In addition, the

• a report addresses itself to the important question of estimating the

variability in Pk in the presence of uncertainty.

Section 1I elaborates on the techniques available to determine the mean

and the variance of Pk' denoted, respectively, by E[Pk] and Var[Pk], when Pk

is expressed as a mathematical function of given input parameters, say X and

Y. It is assumed here that none of X or Y are known precisely but are subject

to estimation error. Such error may arise if, for example, X and Y are

measured subjectively, or X and Y are obtained through some type of

inferential estimation procedure such as the use of multiple regression

scheme.

Section III applies the methodology to the particular situation of -

fragment sensitive targets in the absence of blast and aiming error. The

probability of kill in such an instance can be approximated by the Carleton

damage function

2 2Pkf = exlp[-(A2+ Y2)]. -

R2  R2
x y

Here it is assumed that the weapon explodes at (0,0) and the target is located

at (x,y). Rx and R are two parameters identifying the weapon's radii. The

general approach assumes that estimates of Rx and Ry, as well as the errors in

such estimates, are available, and the problem addresses itself to estimating

Pkf and its variance.

17
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Section IV goes one step beyond and looks at the problem of actually

estimating Rx and Ry as well as their covariance matrix. It is assumed that

experimental results obtained from fragmentation field data of an exploding

weapon are used to estimate the values of R and R in the Carleton damage

function. Two methods are explored, both based on the theory of linear

multiple regression.

Some concluding statements are made in Section V.

At this point two remarks are in order. The first remark concerns the

Carleton damage function. In the cases considered in this report, it is

implicitly assumed that, at the point of weapon explosion, the probability of

kill is unity. Further, one assumes that the equiprobability contour lines in

the (x,y) plane are ellipses with axes coinciding with the x and y axes.

These conditions are fairly reasonably satisfied when the impact angle of the

weapon is close to 90 degrees and the x and y axes are taken to be the

directions of the weapon range and deflection, respectively. Thus, one may

use the two-parameter Carleton damage function as a model for this

situation. When the impact angle is smaller than 90 degrees, the equiproba-

bility contour lines do not, in general, follow elliptic patterns and are not

in general symmetrical about the deflection axis. However, because of its

simplicity, the Carleton damage function is still used in practice.
B

When the probability of kill at the point of impact is less than unity,

the three-parameter Carleton damage function given by

2 2
Pkf= DO exp[-Do( +

x y

is a suggested model (see e.g., [6]). Notice that in this case, since

0 < Pkf < 1, one must necessarily have 0 < Do< 1. In what follows, only the

two-parameter Carleton damage function is considered (Doz1).

2
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The second remark concerns the fragmentation field data for computing

Pkf* It will be assumed that such data are available and that they have been

processed to exhibit in matrix form the value of Pkf at a target point (x,y),

when the weapon impacts at (0,0) with a given angle and at a given velocity.

3
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SECTION II

METHODOLOGY

1. Background

In many practical situations, a measure of the effectiveness of an

exploding weapon upon a target is usually expressed by the probability of kill

Pk" The computation of this Pk value is most often undertaken by using a

mathematical expression or model which is a function of the target position

relative to the center of explosion, as well as a function of one or more

parameters. These parameters are, in general, established either subjectively

or experimentally or both, and they account for a number of factors which may

be present at the time of the explosion, such as weapon characteristics,

impact angle, impact velocity, nature of target, etc. An example of a Pk

function is the Carleton damage function which was previously introduced.

Thus, given a set of conditions, the formula allows one to compute a Pk value

* for any location of the target relative to the weapon. However, one must

realize that this formula, like any other, is only an approximation whose

usefulness is dictated by how accurately it represents reality. This is due

to the fact that (a) the mathematical model is not an exact replica of the

actual situation and (b) the parameters in the model are estimates (random

variables) rather than exact quantities.

A natural question that may be raised in this context is how good is the

Pk value computed from the mathematical model; or, precisely what is the error

of the Pk value? To answer this question, one should note that Pk being a

function of the estimates is itself a random variable. Theoretically

speaking, given the joint distribution of the parameters, the distribution of

Pk could be obtained, thus providing a means for calculating, for any

confidence level, interval estimates for Pk* However, in practice this is not

4
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possible due to several reasons. First, from an economic point of view,

inadequate data are available to describe fully the joint distribution of the

- parameters. Second, Pk is, in general, a complex function of the parameters,

and thus, characterizing its distribution becomes very difficult, if not

impossible. Finally, the intent is not to set up accurate confidence

intervals on Pk, but rather to provide the decision maker with adequate

information on how Pk behaves statistically in the presence of estimation

error in the input parameters. Thus, very often the parameters will often be

characterized by their first two moments. Similarly, the establishment of the

first two moments of Pk will be adequate for our purpose.

For argument sake, suppose that the probability of kill, Pk, is a

function of the two input parameters X and Y so that

Pk Pk (XY) (1)

Suppose that each of the parameters X and Y are estimates subject to error.

It is required to determine E[PkJ and Var[Pk].

If the joint distribution of X and Y is known and is, say, fXY (x,y),

then

E[Pk] = yf P (x,y) f (x,y) dx dy

2 and ECP2 2 f' (x,y) dx dy
and E[Pk2 =x,yf Pk (x~y)fxY"..

From these two expressions one can obtain

Var[Pk] E[Pk] - E2 [Pk].

It should be noted that although it is impossible to completely

characterize the function fXy (x,y), nevertheless, there exists methodologies

to arrive at approximate estimates of E[Pk] and Var[Pk]. We shall digress on

two such methods which are:

5
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a. the subjective estimation procedure

b. the Taylor's series estimation procedure.

Each of these methods assumes that certain statistical information is

available on all input parameters which enter in the computation of Pk"

2. The Subjective Estimation Procedure

In the subjective estimation procedure, it is assumed that the

uncertainty level of each input parameter is provided as subjective

information. A lower and upper bound value for each parameter is obtained.

The value of a particular parameter is assumed to take equally likely values

between its two extreme points. This is equivalent to assuming that each

parameter is a random variable uniformly distributed over its range of

values. Further, the parameters are assumed to be mutually independent random

variables. With this statistical information, the evaluation of E[Pk] and

E[P2] are reduced to the computation of a set of definite integrals. Thus,

referring to (1), if X is assumed to be uniformly distributed in the interval

while Y is assumed to be uniformly distributed in the interval

[Yl,,Y?, then, if X and Y are mutually independent, it follows that

E[Pkl = x y-Yf) Pk (x,y) dx dy
(2- 1)(Y2-I1  y 1 x1

E[P 1 = 1 2 2 (x,y) dx dy
(2-x1)(Y2-) y 1 x1

* Note here that under these assumptions, the mean and variance of X and Y are

"- given, respectively, by

6
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E[X] = 2 Var[X] T2-

22

Yl+Y2  (Y2-y1)
2

ECY) = 2 Var[Y] = 12

Although the method often provides expressions for E[Pk] and E[P 2] which
ek

can be analytically manipulated to arrive at closed form expressions, never-

theless, it has certain inherent disadvantages which should be stated at this

stage. First, there is no guarantee that closed form expressions can be

obtained for E[Pk and E[P2]. If such expressions are derivable, they are

usually fairly complex in form. Second, the method does not make any

allowance for incorporating a dependency factor between X and Y, if such

dependency is known to exist. A third disadvantage of the method lies in the

fact that it is not possible to segregate the contribution of the variance of

each parameter component to the variance of the probability of kill Pk*

Finally, the numerical computation of Var[Pk] requires that the computed

values of E[Pk] and E[P 2] be carried to several significant digits.

3. The Taylor's Series Estimation Procedure

In the Taylor's series estimation procedure, the assumption is made that

the statistical moments of the input parameters are known and that Pk (X,Y) is

a differentiable function of X and Y. The expression for the probability of

kill Pk is expanded as a Taylor's series about the expected value of the input

parameters. Only first order terms are assumed significant in the derivation

that follows. However, in general, one could use a procedure parallel to that

outlined here if higher order terms beyond the first are to be included.

Let X E[X] and Y E[Y], then

7)+ Pk I - Pk k

=a, + (Y-Y) w- . (2)Pk (XY) Pk ayY)+ (-) Y , :

7
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Taking expectations on both sides of (2) yields

EEPk (X,Y)] = Pk (X'Y)

Thus, in the Taylor's series estimation procedure, the probability of kill

computed at the mean values of the parameters is taken as an estimate of the

- mean of the probability of kill. This estimate is an approximation which is

adequate for most practical problems. Further accuracy may be obtained by the

inclusion of higher order terms in the Taylor's series expansion. For

example, the addition of the second order term to (2) yields

2 rk k2
1 0(-7) 2 k- + 2(X-I()(Y-Y) - + (Y,Y) --Pk2! 2 Yyy

which upon taking expectations gives

-. Var[EX],- + Cov[X,Y] __ + kVar[Y]
Ix,Y ax v1  .+ va E YY

This last expression would be added to Pk(X,Y) to improve the accuracy of the

value of E[Pk(X,Y)].

To obtain an estimate of the variance of Pk, write (2) as
k,-

-:: P~k(X'Y) "p Pk3Pk X-r TjT Yg -- 1,

Squaring both sides yields

2 -2 Pk 2 2 aPk 21 "[Pk(XY) - Pk(7,)] - ( T ,+ (YY) (3T) ,

S2(x--)(Y-7) C )k . (3)

.. {, :':8



Taking expectations on both sides of (3) and remembering that

Pk(X,-) E[Pk(XY)] yields

VarBPk(X,Y)] 
2Var[X a 21,

ik kk
VrP+Var[Y)(-y) -

+ 2 Y~Cov[X,Y) ] k~ (4)

Formula (4) provides a mean for computing the uncertainty in the value of

Pk (X,Y) as a function of the uncertainty in the values of the input

parameters X and Y, namely Var[X], VarY] and Cov[X,Y]. Of course, in case

when X and Y are independently distributed, the covariance term vanishes and

expression (4) involves only the variance components.

The advantages of this method are three fold. First, it is possible to

obtain fairly simple expressions for E[Pk] and Var[Pk]. Second, in case when

the input parameters are correlated, the uncertainty in Pk can reflect the

extent of this correlation through a covariance term. Finally, the

contribution to the Pk variance of each variance component can be identified

and segregated. With an objective towards reducing the Pk variance, the

methodology allows one to breakdown the Pk variance into its components and to

identify those input parameters with the largest variance contribution. It

should be noted that the method fails in cases where Pk is not a

differentiable function of the input parameters.

As was mentioned earlier, when using the Taylor's series estimation

procedure, a decision has to be made on how many terms are to be retained in

the expansion. As a first approximation, only first order terms are usually

retained. Improved accuracy in both E[Pk ] and Var[Pk] could be obtained by

the inclusion of second and higher order terms. This however, would generate

9
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cumbersome mathematical expressions and would require a knowledge of the

higher moments of X and Y. In what follows, only first order terms are

considered in order to maintain the simplicity of the expressions derived. An

extensive discussion of the Taylor's series estimation procedure is included

in [2].

4. Remarks

a. Experience has shown that in cases where X and Y are independently

distributed, the subjective estimation procedure and the Taylor's series

estimation procedure provide results for E[Pk] and Var[Pk] which are in close

numerical agreement. This will be verified later on in this report when the

methods are applied to fragment sensitive targets in the presence of no aiming

error.

b. In establishing confidence intervals for Pk' a two standard

deviation (co=2) two-sided confidence interval is selected. In such a case,

Chebyshev's inequality guarantees at least a 75 percent confidence interval

since for c=2 we have

P{E[Pk] - avVarLPkJ < P k < EPk] + aVa rPkJ} 1 -2 .75

10
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SECTION III

APPLICATION OF THE ESTIMATION PROCEDURES

1. The Carleton Damage Function

For fragment sensitive targets, in the absence of aiming error, the

Carleton damage function may be used as a model to measure the value of the

probability of kill due to fragmentation, Pkf' at an arbitrary point (x,y) in

the plane given that the weapon bursts at the origin (0,0). This damage

function has the form

x2  y2 i

Pkf exp + -7)] (5)
RRx y

where Rx and Ry are two parameters known as weapon radii. Rx is the weapon

radius in the direction of range which is the direction of the main weapon

axis (the x-axis). R is the weapon radius in the direction of deflection
y

(y-axis) perpendicular to the x-axis. In general, Ry > Rx. y- .

It is assumed now that the parameters Rx and Ry are not known exactly and

that they are subject to estimation errors. Under these conditions, it is

required to estimate the error in Pkf" To do this, one needs to evaluate both

E[Pkf] and VarrPkf] in order to specify an interval estimation for Pkf for any

(x,y). The estimates of Rx and Ry are assumed to be given either in the form

of a minimum value and a maximum value through a subjective estimation

procedure, or in the form of a vector mean and a covariance matrix through an

inferential estimation procedure. Given the estimates of Rx and Ry. the

problem is to determine E[Pkf] and Var[Pkfl. We shall consider next the

application of each of the two methods discussed in Section 11 to this

particular problem.

112



2. The Use of the Subjective Estimation Procedure

Here it is assumed that Rxand R yare uniformly and independently

distributed over the respective ranges R < R < R~ and R < R < R
x1 2 ~2

The quantities Rxi, R , Ry. and R~ are supposed to be known. They may be

determined, for example, through a subjective procedure in which individuals

are requested to provide a lower and upper bound on the values of Rxand R

*based on their judgement and their experience. The main objective is to

determine E[Pkf] and Var[Pkf

* a. Estimation of ECPkf

Using (5), the expectation Of Pkf is given by:

E[Pk] =(R R )R ~x ~R Rx
yy1  x2 12 1  1

1f (R R Ry~ ~)d R 2 exp( *X * d
S(R-R Y1R x X R R R R 6

A 2

J(~~,B_2 d= (6)'~ 1d
12 vlx x

ntegrating by patIyed

B k12
-I, ) f x ( -)d

*~~~ u-5 . . .. . . . . . . . . . . . . . . . . . .

Now. . . . . . . ~ * * ~ * making.. . . .c.. . g.. . . v. .i.ble.v. ..t. .s.in. .gr. . . . ..ession yield

.. . . .. . .. .. . . . ..........................................................................................



1 12 k
J(A,B) e- ( ~ )( 2k v) e dv

=B exp( )- A exp(. ;2-) -2k
2  ek2 2 d

In the integral expression let kv = ~;then dv - 1dw and

kv' w 2

k2k 2  - T --J(A,B) B exp(- )- A exp(.-- k V f e dw LO
B A k o;

2 2
k w2  k/ w

= B exp(- -)-A exp(- -)-k,'2 [f e dw -f e dw]

k/7 w 2

= B exp(- By.) -A exp(- -2 - 2k/ e dw

kv & w2

e 2 dw]

1 Z 2

Let ( ) -f e dw.

Thus, .(z) is the area under the standardized normal curve to the right of z=0.

These values are readily available, and can be obtained from existing tables

(see e.g., [1]). The expression for J(A,B) can be written as:

J(,) ep-k 2  k2  k/7 kv7
-(.) Bex( y A exp(- AZ) -2kAr ((w - (-) (7)

13



The expression for E[Pkf] given in (6) can be written using (7) as

E[Pkf] = ( ° exp(- X2 ) - R exp(- 2
y2  y1  x2  x1  2

- 2x 4T [,(X/- -2) - ,*(-2)} {Ry exp(-R 22)
Y2

22
(,(Y/2) *(12-Ry 1 exp(-' 2) - 2Y'ir [ - X(8)'

Yl Y Y2 2.

R ~ ex( yw OyL) OY 2]
Y J R 2 R yy lY

b. Estimation of Var[Pkf]

The following expression results after squaring both sides of (5)

Pkf exp[(_ . + 2y2 1  (9)
R Rx y

It is thus evident that E[P~f] can be obtained directly from ECPkf] given in

(8) by replacing x and y, respectively, by xV-2 and y/2 . This substitution

yields

EPf1 {R exp(- ) exp(- 2x2
kf (RyRy )(R ) x R2  1

2 .

- 2xv'i [,(.- " *(C -]} {R exp(- R2-2 .:

y2
2w--,I (Rexp(- 2

Xl Y2 ""

R exp,-Y- 2y,/2- 0 dy-l) - 4~- ) (10) ::

The expression for Var[Pkf] can be obtained by using (8) and (10) in the formula

Var[Pkf] = E[P2f] - {E[Pkf]}2 . (11)

14
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c. ExampI e

It is required to determine an estimate of the probability of kill Pkf "

for a fragment sensitive target located at x=50 ft and y=100 ft when a weapon.:--

detonates at (0,0). The blast effect is neglected, and it is assumed that the

Carleton damage function given by expression (5) can reasonably be used to

compute Pkf" A subjective evaluation of the weapon radii identifies the value

of R to be at least 80 ft but no more than 90 ft. Similarly, the value of R

is judged to be at least 160 ft but no more than 180 ft.

0

To proceed with the calculations, it is assumed that the parameters Rx

and R are independently and uniformly distributed over the respective ranges .. .
y

80 < Rx < 90 and 160 < Ry < 180. Further, the requirement is to calculate not

only E[Pkf], but also Var[Pkf] in order to place confidence bounds on Pkf"

Note that = 80 ft, R 90 ft, = 160 ft, and Ry2  180 ft.

The expression for E[Pkf] is given by (8). Substituting for the

numerical values of x,y, Rx 9 Rx2 and R yields
1 2' y1  Ry2

=[ 1 90 exp[- 50 2x[ 2 z('.o:::

E[Pkf] (180-160)(90-80) - 50 " 80 exp[- 50

(2)(50)V t (5-T- b5V 2 1 ,go exp[- 10"
o90 180

160 exp[- (1O0) (2)(100) Vw (0(-f--) 1

({66.099,930,47 - 54.130,707,69(20)(10)

- 100 Vf [*(.883,883,5) - 0(.785,674,2)}.

( (132.199,860,9 - 108.261,415,4 - 200 ,[§ [€(.883,833,5)

- 4(.785,674,2)1} , (1)•

0
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The values of the function 0(.) are obtained from the tabulated values in [1]

* using linear interpolation. As an example, to compute o(.883,883,5), the

A following two values are read from the table:

o(.90) .315,939,88

o(.88) =.310,570,35

It thus follows that

o(.883,883,5) 0(#.88) [o£(.90)-o( .88)](. 883,883,5-.88)
(.u-. 13t)

.310,570,35 + (.005,369,53)(.003,883,5)

.02

-.311,612,98

One obtains simil1arly

0(.785,674,2) o (.78) +~(.0'(.8]:8,7,.8

-. 282,304,56

+(.288,144,60-.282,304,56) (.005,674,2)
.02

-.283,961,44.

Substituting for these numerical values in (12) yields

E[Pkf] .499,582,48.

In a similar fashion, using (10) one obtains for ECP2f

16
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ECP f) [9 1x[- 50 80 exp 5Q2k 180-160) (90-80) 80 x [2[2 ~~

- ~~~(2) (50) 0/?[((2) (50) 3)i)]

2 io 2

{180 exp[-2( -g) -160 exp[-2(TF6) I

-(2)(100) F27 [,(2)(100) b - (2)(100)fl

1
= (48.546,675,65 -36.626,668,94

-100 i2Tn [oz(l.25) -~111111]

{97.093,351,30 -73.253,337,881

-200 /2 rCo(1.25)- (11,1,)] .- 0

From the tables one obtains after using linear interpolation

o(I.25) =.394,338,81

and o(1.111,111,I) =.366,727,93

Substituting these numerical values in the expression for E[Pkf] yields

ECPf] =.249,898,556,3

Using (11), the following numerical value for VarEPkf] is obtained

17



VarIIpkfl = E[Pkf) - E[Pkf]12

= .249,898,556,3 -(.499,582,48 )2

= .000.315,902

The standard deviation of Pk s

Var is:f

=V .000,315,90? .0178

Thu,;, using Chebyshev's inequality, with at least a 75 percent confidence

interval, we have

Pk E[Pkfl 2a~

.4996 + .0356

3. The Use of the Taylor's Series Estimation Procedure

Referring once more to the Carleton damage function given by expression

* (5), the parameters R~ and Ry are assumed to be subject to estimation error

and thus cannot be determined accurately. These parameters are to be

sppcifie-d at least in terms of their first two moments, that is, in terms of

* their statistical means

Rx E[R ] and R y ECR y (13) 9 -

and in terms of a covariance matrix defined by

IVar[R ICovFR OR
x x' y(14)

Cov[RXORy Va rfIR

18



In case Rx and R are subjectively estimated in terms of their ranges, say
y

Rx < R x <Rx2 and Ry < Ry < Ry2, and assuming that RX and Ry are

independently and uniformly distributed over such ranges, the statistical

means and the covariance matrix are given, respectively, by: - '

R +R R +R
X 1Y '22 (15)

x 2 y 2

( (R~ xR x
2 1 0
12 _ _.

(Ry2Ry)2 )
0S

1 2" -" -

On the other hand, it is possible that the parameters Rx and Ry are

estimated using a specific inferential procedure, such as a linear multiple

regression analysis. In such a case, one may, for example, use experimental

data to fit the Carleton damage function, and as a result of such an analysis,

derive estimates for the first two moments of Rx and R (see Section IV).
x y

We next show how one can use the estimates of R and Ras expressed inx y.a xresdi

(13) and (14) to derive expressions for E[Pkf] and VarfiPkfl.

a. Estimation of E[Pkf]

As a first approximation one can write (see Section I).

E[Pkf] Pkf(R, Ry)

Using expression (5) for the Carleton damage function function one obtains

E[Pkf] x + 2 (17)2 2 ". . . .
Rx Ry

19
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b. Estimation of Var[Pkf

The procedure outlined in Section 11 is used to arrive at an expression

*for Var[Pkf]. Expanding the expression for Pkf = kf (IxR~1  as given in (5)

*as a Taylor's series about the point j~, and retaining only first orderx y

terms results in:

Pkf (Rx1R9 y kf (W f,R ) + ('x - kf

y R ,R
x y

Transposing and squaring both sides results in

2

[Pf (RP~ - kyRR)]2 (Rx- )2 (apkf
KY~ ~ xxR ,R

x y

(apkf 2f F(... kf
(R -R) '--~ + 2(R R )(R -**)

t R(18)
yR R 'T x y

x Y x y

Taking expectations on both sides of (18), one obtains as a first approxima-

tion

2 3 k

Var[Pkf] Var[Rx] 3Rxk +, Var[R] kf
3Y x yY Y J

+ 2 Cov[RR] kf kf (19)
xy x y R ,R

Now fromn expression (5)

2 2 2
kf - x erK +(0

aR - 3 ep _( 2 + 2)(0
x R R R

x x y

20
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2p 2 2
ndkf 2y e (X + ~7~(21)

y RR R
y x y

Substituting (20) and (21) in (19) yields

44  2 2
VarCP kf] 4x' jexp[-2(-- + -IVa[

R 6 -2 -2 X arR
x x y
4 2 2

4+ .'. lexp[-2(x - -)]t VarfiR1-,- -f2 -f2 y
y x y

2 2 2 2
+ ! I exp[ -2- + '-)]I CovflRRI.()

RR R R
x y X y

C. Example

Consider the data given in the example of Section 111.2.c. where

80 < Rx< 90, 160 < R, <180, x =50, y 100. Using the expression (15) and

(16) yields

R +
1 2 280+90

Rx 22 85f

R +R
= yl Y~2 160+180=10f

Wy 2 2 10f

(RX Rx )2
Var[R] X 2(08) 100 ft 2

1212 12

(Ra R[ ) (180-160)2 400 2

Y 12 12 12 f

By assumption, Cov[RXPR yi 0.

Using these numerical values in (7) and in (22), we obtain

2 102].
EEkf) exp-[(Vg) + (100

.500

21



4 2'Var[Pkf] =45)(85) 6  {exp[-2( (50)2 + (0)]}1 ,-Ti -"

+ (1) {exp[-2( (50)2( 1 (100)2 400

(170) 6  (85)2  (170)2] (M1)

= .000,138,4 + .000,138,4

= .000,276,8

The standard deviation of Pkf is

fkVpkf 00,276,8 .0166 .- ,.

Using Chebyshev's inequality with at least a 75 percent confidence interval we

have

Pkf E[Pkf] 2Pkf

= .500 + .033.

This last result is fairly close to the numerical result in the example

of Section 111.2.c. The computational simplicity of this last method as

compared to the subjective estimation procedure should be pointed out. In

. addition, one notes that the variance contribution of the input parameters RX

* and Ry, respectively, to the total Pkf variance are equal. Of course, this is

coincidental and is due to the particular numerical data used. In general,

the variance contributions will be different. The methodology provides a

*means for segregating the variance component of each of the input parameters

entering in the computation of Pkf' and from that point of view is definitely

more advantageous than the subjective estimation procedure.

22
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SECTION IV

INFERENTIAL ESTIMATION PROCEDURES

1. Background

The next logical question that arises consists in the way the statistical

characteristics of the input parameters Rx and R are established. It was 0

seen that one of the methods is the so-called subjective method. The other

method is the inferential one in which experimental data are used to estimate

the values of the parameters Rx and Ry when Pkf is expressed as a mathematical •.

function of these parameters. Two regression schemes will be discussed

through which one could compute such values as E[Rx], E[R y], Var[Rx], Var[R y

and Cov[RxRy]1, all of which are used in the Taylor's series estimation

procedure to arrive at values of E[Pkf] and Var[Pkf].

2. A Linear Multiple Regression Scheme: Method 1

The starting point is the Carleton damage function which was defined by

expression (5) and which is repeated here:

kf2 2

x y

It is assumed here that, through the analysis of the fragmentation data, a

value of Pkf is specified at a given location (x,y) when the weapon bursts at S

(0,0). The main objective is to estimate the values of Rx and Ry.

Suppose that there are n data points. For the ith data point

(i=l,2,...,n) Pkf I represents the probability of kill due to fragmentation at

the point (xi,yi). In what follows it shall always be assumed that

Pkf i  P1kfrfal .•I cae.
0 < <f I for all i. In case = 0 such data point is discarded.

23
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Taking logarithms on both sides of (23) yields

2

= 2 2
-In Pkf = kf R + (24) 

. x y]
In (24) let

z= lnTH~f), u- x2, y (25)
kf

a=- and b=-L (26)
R2  R2x 

y

Substituting these values in (23) one obtains

z au + bv. (27)

For the ith data point, we shall assume that

.= z -au -bv (i=1,2,...,n) (28) ,•.'

are independently distributed, and further that

E[c i] = 0

Var[ci] 2 (29) w

2

The parameters a, b, and a are to be estimated.

At this stage one may be tempted to assume that z = ln(.p-) is normally

distributed with mean (au+bv) and variance a2, and attempt to use the maximum

2likelihood technique to arrive at estimates of a, b, and a . However, since

0 < Pkf < -1, it follows that 0 < z < -, and hence the assumption of normality

of z may not be justified. However, the least square technique may still be

2
used for the estimation 9f a, b, and a . Using (26) and the Taylor's series

estimation procedure, it will be shown how one can obtain estimates of Rx and

R from the estimates of a and b.
y

24
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a. A Least Square Technique

Using (28) the classical least square technique may be used to arrive at
20

estimates of a, b, and a .* Note here that through the transformation (25) and

(26) a non-linear multiple regression scheme was changed into a linear *-..-

multiple regression scheme. One is thus led to determine a and b so as to

minimize the function

n n
= i (zi-au -bv 1)

2  (30)

The specific steps of the technique are well known (see e.g., (5]) and will

not be presented here. The two normal equations are

n
Sui (z1-au1-bv1) =0

n
Svi(z 1-au1-bvi) -0

which reduce to

n n n2a u1 + b u uv ~ uz~

(31)
n n 2 n

a u uv 1+ b vi=~ v z1  5 -7

The following notations are now introduced; let

nn n
a1 = n 2 a12  a1  uv1, a2 V (32)

n n
and C1 I i uz, c2  v z V 1  (33)

25
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All these quantities can be numerically computed. The normal equations (31)

can be written as

a 11 +b 12 c1  (34)
a a2 + b a2= c2  .-_
a21 b 22~ 2 J

Consider the matrix

A all a 121
a 21 a22 (35)

Its inverse is

A-1 1 a 2 2  -a21 (36)
a11a22-a -a a1

12 a12 1

Clearly

and the estimates a and b of a and b are immediately given by the equations

a c-ac
a11 a2 2 -a 2

-a 12c +a 11c2
b' (38)
a 11a22- a12

It can be verified that a and b are unbiased estimators of a and b so that

E[a = a and E[b] b. Knowing a and b, one can obtain an unbiased estimate

2" of 2 (see e.g., [4)) which is given by
n

12 n 2au. ,vi • (39)

26
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Further, one obtains [5]:

Var[a) - a22  "2 (40
a1 22  - 2VarzJ =(40)

a 1 1 22- 12

CVab] - a 1  2 (42)',
11 -21-.. ,

all1a22-a 2  .+..

or more succinctly, the covariance matrix of (a,b ) is given by I

Var[a] Cozb (41)a -(~ ~1 C2 12 2 2 (3

ov[a,b) Var~b] al 22 -a12 -12 a2 12

b. Estimates of R and R

x

It is clear that in the Taylor's series estimation procedure, the

determination of ECPkf] and VarCPkf] requires as input the values of

Rx =E[Rx], =E[Ry] (44)

and the covariance matrix

Var[R ] Cov[R ,Ry ]  (45)

Cov[R x ,Ry] Var[Ry] -

The intent now is to use the results of the previous least square

analysis which yielded a and b, the estimates of a and b, respectively, as well

as

Varia] Covta,b.

Covta,b] Var[b) J

27
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to obtain (44) and (45). This can be accomplished through the functional

relationship given by (26).

Before one proceeds any further, it should be noted that the notation a

is used to denote both the estimator of a as a random variable and the

particular numerical estimate of a obtained from the least square analysis and

given by (37). The same holds true for b. In the sequel, the meaning of the

notation a or b should be clear from the context.

Since a and b are not known exactly but are, in general, random variables,

it follows from (26) that Rx and R are themselves random variables given,
y

respectively, by

Rx  1 and R = (46)

a y b

Expand now Rx a-1/2 as a Taylor's series about the point a. One ebtains

xjdR dA

R =R (a-a) IT(;- _7
a=a da 1;=a da a=a

1 1 (;-a) + 3 (; a) 2 (47)

Fai 2a Ba

Recall that a is an unbiased estimator of a, i.e., E[a] = a. Taking

expectations on both sides of (47) yields:

ER I 1 E(a-a)] + E[(a-a)]
/a 2a 8a
1 Varta. (48)
.a 572

Since a is an unknown quantity, its numerical estimate a given by (37) is used

instead. The value of Vara3 is given by (40).

28
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Subtracting (48) from (47) one obtains the following up to and including

first order terms:

40

R (a-a) . (49)
K K 2a

Squaring both sides of (49) and taking expectations yields

Var[R ]  Vari (50)

Similarly one obtains

S

+ 3 Vat[t] (51)

R (b-b) (52)

~ 2b

Var[Ry 1 Varib] (53)
y 4

Multiplying (49) by (52) and taking expectation yields

Cov[R ,R = 1 Cov[a,b)] (54)
X y 4(ab) 3 /

Expressions (44) and (45) are thus completely specified. The following is a

summary of the results obtained when a and b are replaced, respectively, by their p

estimate a and b

1+ 3 Var[a] y + 3 Var[b] (55)
Ia 8ay F08

Var[a] Cov[a,b] I" "Var[R Cov[R,R ;3  3/2"

S ~ 4(ab)(56)
Cov[R ,R 3 Var[R 3Cov[a'b] Var[b]

xy y 4(a,b)31  41
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3. Another Linear Multiple Regression Scheme: Method 2

This section digresses on a second linear multiple regression scheme to

determine estimates of the parameters Rx and R of the Carleton damage
x y

function

x2 y2  -
Pkf = exp [-(-

x y

In this instance, it is assumed that one knows, a priori, values Rx and Ry

close to the estimates of Rx and Ry, respectively. Specific procedures to

obtain such initial values of R and Ryo will be discussed later.xo y
The expression for Pkf is expanded as a Taylor's series about the point

(RxoRyo) to yield up to its first order terms

P P+ (x-Ro) x+ (RR A ) R R
Pkf = kf R ,R R R ,XoR y yRxoR Y

x 0 YO .

x 2  y2  2x2  2 2
= exp[(-- )] + (R e x p

R R2 _2 o + (RXR0 0R R R

-X "0 YO 0o Yo -
2 x2 y2 (

+(R -R 32 exp[-( .- + -- )1 57Y YO R3  (R R
0 0  y0

Multiplying both sides of (57) by exp(R + and transposing one obtains
RR2

oy-

2 2 2 2• ... 2x 2  2y 2

Pkf exp( -) -I = (RRxo ;o + (RR ) - (58)2 2 x YO Y ORL R

Let now

2 2
•" ,Pkf • exp(-- + X 1 (59)

Syo
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a =RX-Rx , b =R-R (60)

2y y2
2x 2  2y (61) 6u ;3- v 3

0 YO

Equation (58) becomes:

z = au + bv. (62)

a. The Least Square Technique

Clearly z is a linear function of u and v. The method just described

approximates what would have resulted in a nonlinear regression scheme with a

linear regression scheme using the Taylor's series expansion and retaining

only first order terms. The variables u and v are obtained from the known .

coodintes(x~) a whch kfis measured experimentally. The numerical

values of z at a particular (u,v) are deduced from the known values of x,y and

Pkf" Under these conditionsone is again dealing with a linear multiple

regression scheme, and the values of a and b, and hence Rx and Ry, can be V

estimated using least square techniques as described in the previous section.

The output results of the least square approach will consist of the - -

estimates a and b of a and b, respectively, as well as the covariance matrix -.

IVar[a] Cov[a,b]

Cov[a,b] Var[b] (63) .:

From (60) it follows that

R R + a = R +b (64)
X 0  

0"O- 
0

and, of course,

(Var[R X1 CovERxRy) JIar Covab I[.o~ 'i^ (5)•
CovR , I Var[R j I Cov~a,b] Var~b) I
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It is possible to obtain better approximations for the estimates In (64)

and (65) by retaining higher order terms in the Taylor's series expansion.

This, however would considerably add to the complexity of the problem. A more

natural approach consists in using the initial values of R and to obtainestimates Rand

estimates Rx  and Ry using the linear regression scheme. This could be

followed by a second iteration in which R and would be used as initial

values to obtain improved estimates R and R using the same linear

regression scheme and so forth, assuming that the procedure will converge to

some value of Rx and Ry.

It should be noted that one of the advantages of the present multiple

regression scheme over Method 1 discussed in Section IV-2 is that values of

Pkf 0 need not be discarded from the data in the least square analysis,

provided that they be counted as additional observation points.

b. Initialization of the values of Rx and Ry

The previous method on the linearization of a non-linear multiple

regression scheme using Taylor's series expansion procedure is predicated on

the assumption that initial values Rx and R for the two weapon radii, which

* are close to the estimated values, can be obtained. Next, three possible

avenues are discussed that could be used to obtain such initial values using

experimental data. Such data is usually in the form of a matrix giving values

of Pkf for various values of (x,y) when the weapon detonates at (0,0). -

In the first procedure, the values of R and R are obtained from a.-
K0

- knowledge of the mean area of effectiveness (MAE) of the weapon as well as the

impact angle I. The following relation is used:

MAE = f J Pkf (x,y) dx dy rRx R . (66)
-0  y
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The value of the double integral is obtained from field data giving Pkf(xy)

at specific values of x and y. Assume now that Rxo is the weapon radius in

the direction of range and R is the weapon radius in the direction of
Yo

deflection. Let I be the weapon impact angle. Then the ratio Rx /R
0.

satisfies the following experimental relation (see e.g., [3]):* 
0

R 
0= 1 - 0.8 Cos I (67)

Yo

Using (66) and (67) values of Rx and R can be obtained.

In the second procedure one uses the following relations to obtain Rxo

and Ro respectively, (see e.g., [6])

R2  = 2x P (x,O) dxX ~kf
00

Y o f 20 kf (Oy) dy
o o

Thus R2  is obteined by multiplying each value of the damage function on the

x-axis by 2x and integrating the result over all possible values of x.

Similarly, R2  is obtained by multiplying each value of the damage function •

along the y-axis by 2y and integrating it over all possible values of y.

To use the third procedure, one notes that in the expression for the

Carleton damage function, the equiprobability contour line corresponding to a

probability of kill of Pkf e -1 = .3678794, has for equation

2  y2x 
y

Thus the two weapon radii Rx and Ry correspond to the semi-axes of an ellipse,

and these values can be determined from the Pkf matrix obtained from the

fragmentation field data.
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SECTION V

CONCLUSIONS

It has been customary to evaluate weapon effectiveness by the use of a

single index number such as the probability of kill Pk* In the present report

procedures have been developed for estimating the error in the Pk value

knowing the error in the input parameters used to compute Pk-

For fragment sensitive targets, the Carleton damage function appears to

be a reasonable model to compute Pk in the absence of blast and aiming

error. This function usually contains the two parameters Rx and Ry which

define the weapon radii. The report has addressed itself to the specific

problem of utilizing the inherent errors in Rx and Ry to compute the error in
Pk*

Methodologies have been developed to identify the causes of error in the

parameters when field data are used to estimate Rx and R These

methodologies are based on well established statistical techniques such as

linear multiple regression, and their use has provided estimates for R and Ry

as well as estimates for Var[Rx], Var[Ry],and Cov[RxRy]. In turn, these

estimates can be used to compute E[Pk] and Var[Pk]. Knowing the first two

moments of Pk' Chebyshev's inequality provides one with a means for setting up

confidence intervals for Pk values.
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